

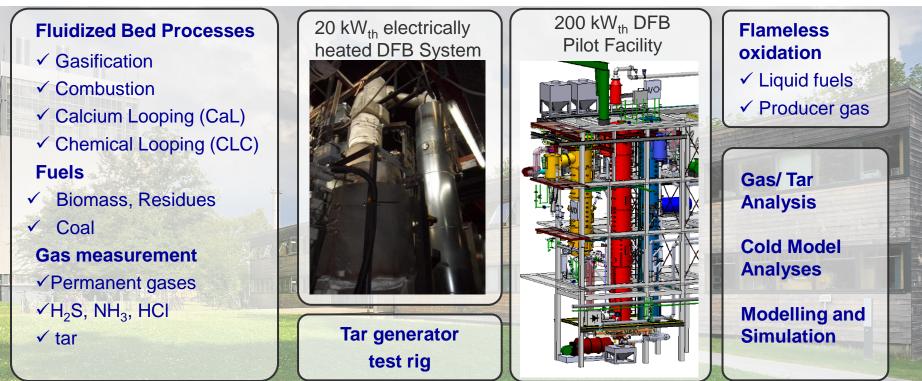
University of Stuttgart

Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

Syngas measurement at IFK

Whats our status? What are we interested in?

Gas Analysis Workshop, 16 June 2017, Stockholm


M. Schmid, G. Waizmann, A. Gredinger, D. Schweitzer, R. Spörl, G. Scheffknecht

University of Stuttgart

Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

Department of Decentralized Energy Conversion

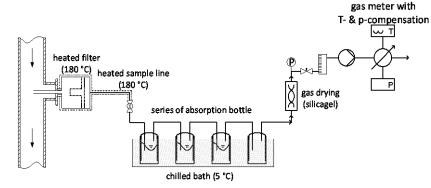
Fuels used in the experimental work

ıfk

Wood pellets

Straw pellets

Dried sewage sludge

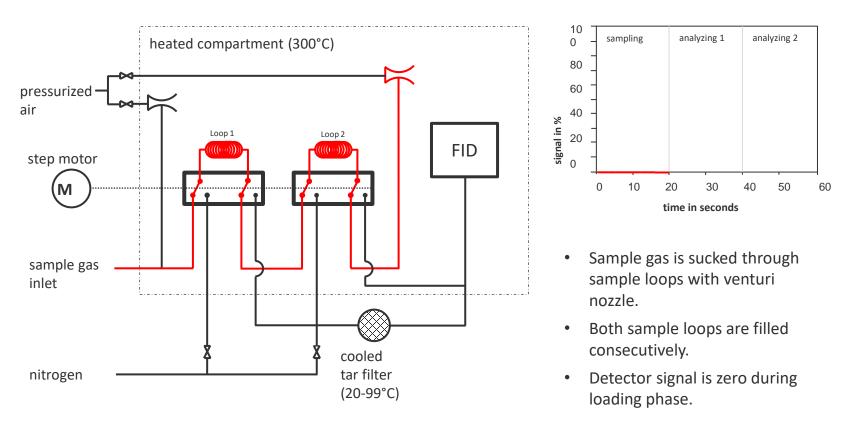


	proximate a	elemental analysis waf						
in wt-%	moisture	ash wf	С	Н	0	N	S	CI
wood pellets	9.8	0.1	50.8	6.3	42.9	-	-	-
straw pellets	10.3	5.7	49.3	6.4	42.8	0.8	0.2	0.5
dried sewage sludge	6.5	47.6	51.0	6.9	32.1	7.5	2.4	0.2

Measurement techniques at IFK

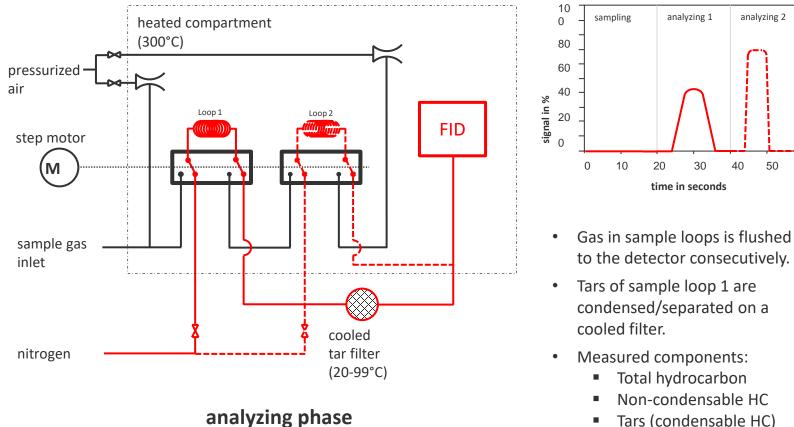
IFKs Online FID Tar Analyzer

- Wet chemical H_2S , NH_3 , HCI
- Tar protocol



Gasmet FTIR Analyzer

Final device

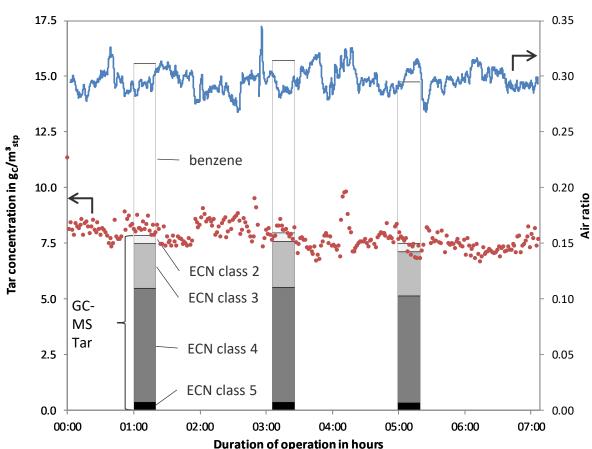

Measurement principle

sampling phase

Measurement principle

7

Tars (condensable HC)

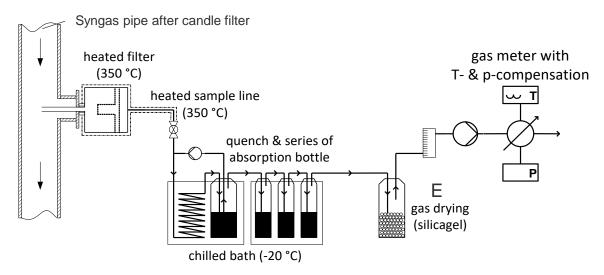

50

60

Comparative measurements - Results base case

Base case at 800 °C and an air ratio of 0.3

8

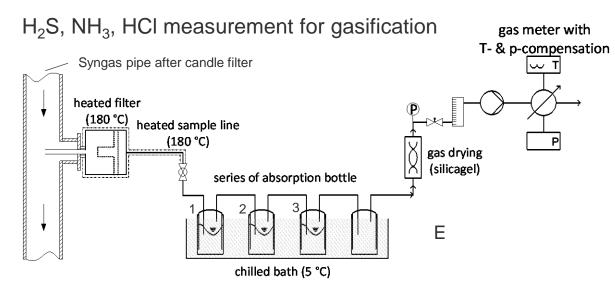


• Time of operation of more ³⁵ than 7 hours.

- 3 comparative measurements.
- One online measurement cycle had a duration of around 84 seconds (300 cycles).
- Online measured tar concentrations follow the wet chemical comparative measurements very close over the total time of operation.
- Air ratio fluctuates little because of the volumetric dosing system.
- Heavy fluctuations in air ratio result from refill of dosing system.
 - If heavy fluctuations of air ratio present, online measurements increase/decrease immediately.

Methods - wet chemical impurity and tar measurement

Tar measurement arrangement

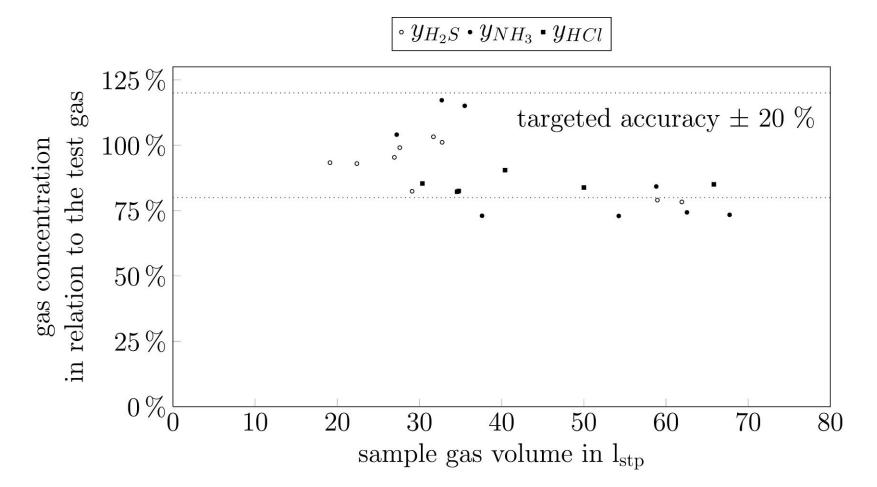

ıfk

Further explanations: Visual Presentation 2CV.3.31 D. Schweitzer, M. Schmid, A. Gredinger, R. Spörl., G. Scheffknecht: Gasification of waste biomasses: Measurement of pollutants in product gas, EUBCE 2017

DIN CEN/TS15439 (tar protocol)

- Absorption liquid: Isopropanol
- Liquid is sampled and analysed Gravimetrically (GC-MS also possible)

Methods - wet chemical impurity and tar measurement



Further explanations: Visual Presentation 2CV.3.31 D. Schweitzer, M. Schmid, A. Gredinger, R. Spörl., G. Scheffknecht: Gasification of waste biomasses: Measurement of pollutants in product gas, EUBCE 2017

- H₂S: DIN 51855-4 (iodometric titration)
- NH₃: DIN EN ISO 11732 (indophenol method)
- HCI: Coulometric analysis

	H₂S	NH ₃	HCI
Tar removal solution bottle 1	lsopropanol, H ₂ SO ₄	lsopropanol, NaOH	-
absorption solution bottle 2+3	Zinc acetate	1 mol/l H ₂ SO ₄	H ₂ O

Accuracy of wet chemical measurement techniques

ıfk

FTIR experience for syngas/offgas analysis Gasmet DX4000

1	

Gas	Measured species	Result quality
Synthetic flue gas	HCI, N ₂ O, standard gases	Very good
Flue gas	HCI, N ₂ O, standard gases	good in accordation to other analyzers
H_2O , tar model compounds, N_2 from test gas generator	H_2O , phenole, xylene	Very good
Catalytic reforming of test gas from test gas generator	H ₂ O, phenole, xylene All possible reforming products	promising / ? Values make sense, but higher residual values, some hydrocarbons have odd values (to high)
raw syngas from fluidized bed gasification	H ₂ O, permanent gases, hydrocarbons, tars, pollutants	Not so good / ? Permanent gases do not fully match with other analyzers, some spezies have odd values, high residual values <i>Positive: device was not damaged!</i>

What is IFK interested in?

- Tar measurement
 - · Joined comparison measurements
 - Improving the handling of the tar protocol
 - · How to deal with heteroatoms (S, N, Cl) in tar analysis
 - Gravimetric: What about the salts?
 - GC-MS: how to detect S, N, CI containing tar species?
- FTIR
 - Experience exchange
 - · How to evaluate data from raw syngas measurement

ıfk

Thank you!

M.Sc. Max Schmid

e-mail max.schmid@ifk.uni-stuttgart.de phone +49 711 685-63394 fax +49 711 685-63491

University of Stuttgart Institute of Combustion and Power Plant Technology Pfaffenwaldring 23 • 70569 Stuttgart • Germany

ıfk