

Reflexions on the existing guideline (and EN) about the sampling and analysis of tar matter from product gas, pyrolysis gas and synthesis gas

DI Johannes Zeisler johannes.zeisler@bioenergy2020.eu

Milan, 21.06.2012

Application of CEN/TS 15439

Sampling-conditions at measurement point:

pressure [kPa] 60 - 6 000 temperature [°C] 0 - 900 tar loading [mg/m³_n] 1 - 300 000 dust loading [mg/m³_n] 20 - 30 000

Received values:

	gravimetric tar	[mg/m³ _n]
	concentration of individual org. compounds	[mg/m³ _n]
	sum of GC-detactable tar calculates as naphthalene	[mg/m³ _n]
	dust concentration	[mg/m³ _n]

Instructions for: reagents, equipment, preparation, sampling, storage, analysis, calculations, dimensions

Equipment at Bioenergy2020+

- probe: stainless steel, PTFE, glass
- heated filters: planar or depth
- absorption columns: cooled (-20 ℃)
- <u>**DUMD:**</u> membrane pump
 - gas drying/cleaning: silica, activated carbon
- volume detection: diaphragm gasmeter

Milan, 21.06.2012 Folie 3

Quality measures – multi component gasgenerating unit

- **gas flow:** 50-500 l/h
- **<u>gas humidification:</u>** 20-90 °C (saturation)
- gas preheating: 120 ℃
- dosage of liquid standard: 0.1 to 50 ml/h
- <u>vaporisation temperature:</u> 200 ℃
- <u>absorption units</u>: cooled down to max. -19°C;
 100 ml 2-propanol each

Milan, 21.06.2012 Folie 4

- tested substances: BTX(o,m,p)E-S, PAH (naphthalene to crysene), aldehydes, terpenes
- <u>tested absorbance solutions:</u> 2-propanol, acetonitrile (+addition)
- result:

$$y[\%] = \frac{m_{abs}}{m_{input}} * 100$$

HPLC-analysis

BTXE-S:

- Column: Zorbax Eclipse PAH, 4.6x150 mm; 3.5 μm; plus precolumn
- Injection: 10μl, Flow: 2ml/min
- Detection: MWD: 220nm; 254nm (benzene, styrene)
- Solvent: 0-1min 45% acetonitrile, 55% water; 1-15min gradient to 25% acetonitrile, 75% water

Milan, 21.06.2012 Folie 5

<u> PAH:</u>

- Column: Zorbax Eclipse PAH, 4.6x150 mm; 3.5 μm; plus precolumn
- Injection: 10μl, Flow: 2ml/min
- Detection: MWD: 220nm
- Solvent: 0-0.66min 40% acetonitrile, 60% water;
 0.66-20min gradient to 100% acetonitrile, 20-25min 100% acetonitrile; 25-27min gradient to 40% acetonitrile 60% water; 27-30min 40% acetonitrile, 60% water

Dynamic behaviour of benzene, toluene and naphthalene in 2-propanol

Results – BTXE-S-tests (4 runs)

Settings:

	BTXE-S 1	BTXE-S 2	BTXE-S 3	BTXE-S 4
T 1 st bottle [℃]	-15	-15	+14	+7
T 2 nd bottle [℃]	-15	-15	-15	15
T 3 rd bottle [℃]	-15	-15	-15	-15
carrier gas flow [l/h]	200	200	200	200
water loading [kg/kg _{gas,dry}]	-	-	-	0,05
gas-concentration [mg/m ³]	85-110	75-97	80-103	8 5-10 8
concentration 1st bottle [mg/l]	106-148	103-146	58-151	47-128

Milan, 21.06.2012 Folie 7

Findings:

- temperature-influence (cooling):
 - Strongest influence on benzene and toluene
 - at -15 ℃: 80% in 1st bottle
 - at +10 °C: 40% in 1st bottle
- Solvent suitability:
 - 2-propanol suitable for all BTXE-S
 - at -15 ℃: 2 columns sifficient

Results – PAH-tests (9 runs)

Settings:

	PAH 1	PAH 2	PAH 3	PAH 4	PAH 5	PAH 6	PAH 8	PAH 9	
T 1 st bottle [℃]	-15	-12	+14	-12	-12	-12	+7	+7	
T 2 ^{na} bottle [℃]	-15	-12	-12	-12	-12	-12	-12	-12	
T 3 ^{ra} bottle [℃]	-	-12	-12	-12	-12	-12	-12	-12	
carrier gas flow [l/h]	200	200	200	200	200	200	200	200	
water loading [kg/kg _{gas,dry}]	-	-	-		-	/	0,05	0,05	
filtering (planar filter)	-	-	-	X	Х	×	-	-	
gas-concentration [mg/m ³]		3.6 - 4.6 (naphthalene 20)							
concentration 1st bottle [mg/l]	2 - 6 (naphthalene 20 - 30)								

Milan, 21.06.2012 Folie 8

Findings:

- temperature-influence (cooling):
 - − no difference -15/+7 °C
- temperature-influence (heating):
 - for larger PAH (>fluorene) temperature
 350 450 ℃
 - Danger of condensation at T<400 ℃
- solvent suitability:
 - 2-propanol suitable for all PAH
 - generally over 90% in 1st column
 - 2 columns sufficient enough

Results – sample storage

Questions:

- How long can benzene/toluene/naphthalene/anthracene be stored before analysing?
- Has the water-content of the 2-propanol sample an influence on the storage-duration?
- Is it possible to stabilise the samples?

Settings:

	benzene	toluene	naphthalene	anthracene
initial concentration [mg/l]	292	50	206	58
variation of water [%vol]		5,10,	20,30	
variation of acetone $[\%_{vol}]$	5,10,20			

Results:

Milan, 21.06.2012 Folie 9

Summary

Sampling:

- BTXE-S:
 - 100 mg/m³ BTXE-S in gas \rightarrow sampling conditions:
 - 3-columns in a row with 100 ml 2-propanol each
 - Gas-flow: 200 l/h
 - Cooling temperature <-13 °
 - Sampling duration: 1 h
- PAH:
 - 5 mg/m³ PAH (naphthalene to crysene) in gas \rightarrow sampling conditions:
 - 2-columns in a row with 100 ml 2-propanol each
 - Gas-flow: 200 l/h
 - Cooling temperature 0 °C sufficient
 - Sampling duration: 1 h or longer
 - Heating of filter/tube: at least 350° (for largest PAH probably not sufficient)

Storage/analysis:

- BTXE-S: storage-temperature: 2-8 °C (or even cooler); analysis: next day
- PAH: storage-temperature: 2-8 °C (sufficient); analysis: at least 11 days stable

kompetenz

Fractioning of pyrolysis-samples for identification of main components

5 fractions:

Folie 11

Thank you for your attention!

Further questions? Please contact:

DI Johannes Zeisler johannes.zeisler@bioenergy2020.eu DI Markus Kleinhappl markus.kleinhappl@bioenergy2020.eu

Milan, 21.06.2012

Thermodynamic fundamentals of accumulation

- Physical fundamentals and data of selected tars
 - Mechanisms and data
 - Pure substances
 - Gas/Liquid-systems (VLE)
- Test of a single stage accumulator
 - Mass transfer and VLE
- Further information to be useful
 - Standardised characterisation of separators
 - VLE-data for solvents/PAH (PAH-S)
 - Capture and break through curves

Physical fundamentals

Phase change thermodynamic of **pure** substances:

Vapour ← → Liquid: condensation and evaporation

,activity gas= activity liquid'

$$p_{i} = p_{total} \cdot y_{i} \cdot \varphi_{i} \Big|_{gas} = p_{i}^{*} \cdot x_{i} \cdot \gamma_{i} \Big|_{liquid}$$

Vapour \leftarrow **> Solid**: re-sublimation and sublimation

,activity gas = activity solid'

$$p_i = p_{total} \cdot y_i \cdot \varphi_i \Big|_{gas} = p_i^* \cdot x_i \cdot \gamma_i \Big|_{solid \text{ condensed}}$$

The clear and correct description of real substances is not as easy as it looks.

(serveral data ref.; missing data,..)

Physical fundamentals data selection 'Tars'

e.g. selection of PAH

		molar	boiling	melting
		mass	point	point
		[g/mol]	[℃]	[℃]
napthalene	C10H8	128.16	218	80
ace-napthalene	C12H8	152.2	275	93
acetyl-napthalene	C12H10	154.21	279	96
fluorene	C13H10	166.22	295	117
phenanthrene	C14H10	178.22	340	100
anthracene	C14H10	178.22	342	218
fluoranthrene	C16H10	202.26	393	110
pyrene	C16H10	202.26	404	156
a-phenylene anthracene	C18H12	228.29	435	159
chrysene	C18H12	228.29	448	256
b-phenylene-flouorene	C20H12	252.32	393	168
bk-f	C20H12	252.32	480	217
ba-p	C20H12	252.32	496	177
indeno(1,2,3,c,d)-pyrene	C22H12	276.34	534	162
di-benzo (a,h) anthracene	C22H14	278.35	535	262
benzo(g,h,I)perylene	C22H12	276.34	542	273

Physical fundamentals saturation pressures of selected tars

Physical fundamentals saturation pressures of selected solvents

Physical fundamentals VLE of a selected tar against a solvent

VLE, VSE for a solution of compounds in solvents Gas phase status, over-critical; sub-critical

Formation of droplets: Liquid (condensation): 10^x molecules
r Formation of crystals: Solids (re-sublimation): in solid lattice

Adsorption: Energetically forced fixation of clusters on surface, also pore / cavity condensation div. mechanisms, degrees

Condensation: stable liquid phase

Absorption: VLE-Interaction into homogenous liquid phase (solvent,..)

Physical fundamentals VLE calculation and data support

VLE equilibriumdata for BENZENE in 2-Propanol

In term of pressure:

A partial pressure below saturation can be reached, because of homogeneous dissolution in liquid phase: **Law of Raoult.**

e.g. when x_i <<<<!

$$p_{i} = p_{total} \cdot y_{i} \cdot \varphi_{i} \Big|_{gas} = p_{i}^{*} \cdot x_{i} \cdot \gamma_{i,in \text{ solvent}} \Big|_{liquid}$$

Absorption: VLE-Interaction into homogenous liquid phase (solvent,..)

Test of a single stage accumulator technical outline

Reality

The **accumulation** is **instat. transient process** Normally are impingers as **batch** operated.

The capture depends:

- •Ratio flow, capacity
- •VLE

Mass-transfer (condensation, interception,absorption, swarm of bubbles, contact time

For application important:

- Conditions of solvent
- •Selectivity
- Multicomponents operation
- •Capture in transient operation
- •Suitable temperatures (VLE)
- •Real aerosol capture

innovations kompetenz

Test of a single stage accumulator: technical outline

Test of a single stage accumulator results; 3 compounds

First period substance is within the carrier gas; then only carrier.

Test of a single stage accumulator results: dynamic *concentrations BENZENE*

Test of a single stage accumulator results: *mass transfer-intensity:* [k*A]

